Patterns of selection against transposons inferred from the distribution of Tc1, Tc3 and Tc5 insertions in the mut-7 line of the nematode Caenorhabditis elegans.

نویسندگان

  • Carène Rizzon
  • Edwige Martin
  • Gabriel Marais
  • Laurent Duret
  • Laurent Ségalat
  • Christian Biémont
چکیده

To identify the factors (selective or mutational) that affect the distribution of transposable elements (TEs) within a genome, it is necessary to compare the pattern of newly arising element insertions to the pattern of element insertions that have been fixed in a population. To do this, we analyzed the distribution of recent mutant insertions of the Tc1, Tc3, and Tc5 elements in a mut-7 background of the nematode Caenorhabditis elegans and compared it to the distribution of element insertions (presumably fixed) within the sequenced genome. Tc1 elements preferentially insert in regions with high recombination rates, whereas Tc3 and Tc5 do not. Although Tc1 and Tc3 both insert in TA dinucleotides, there is no clear relationship between the frequency of insertions and the TA dinucleotide density. There is a strong selection against TE insertions within coding regions: the probability that a TE will be fixed is at least 31 times lower in coding regions than in noncoding regions. Contrary to the prediction of theoretical models, we found that the selective pressure against TE insertions does not increase with the recombination rate. These findings indicate that the distribution of these three transposon families in the genome of C. elegans is determined essentially by just two factors: the pattern of insertions, which is a characteristic of each family, and the selection against insertions within coding regions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Target site choice of the related transposable elements Tc1 and Tc3 of Caenorhabditis elegans.

We have investigated the target choice of the related transposable elements Tc1 and Tc3 of the nematode C. elegans. The exact locations of 204 independent Tc1 insertions and 166 Tc3 insertions in an 1 kbp region of the genome were determined. There was no phenotypic selection for the insertions. All insertions were into the sequence TA. Both elements have a strong preference for certain positio...

متن کامل

The Tc5 family of transposable elements in Caenorhabditis elegans.

We have identified Tc5, a new family of transposable genetic elements in the nematode Caenorhabditis elegans. All wild-type varieties of C. elegans that we examined contain 4-6 copies of Tc5 per haploid genome, but we did not observe transposition or excision of Tc5 in these strains. Tc5 is active, however, in the mut-2 mutant strain TR679. Of 60 spontaneous unc-22 mutations isolated from strai...

متن کامل

Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio

BACKGROUND Transposable elements of the Tc1/mariner family are found in many species of the animal kingdom. It has been suggested that the widespread distribution of this transposon family resulted from horizontal transmission among different species. RESULTS To test the ability of Tc1/mariner to cross species barriers, as well as to develop molecular genetic tools for studying zebrafish deve...

متن کامل

Continuous exchange of sequence information between dispersed Tc1 transposons in the Caenorhabditis elegans genome.

In a genome-wide analysis of the active transposons in Caenorhabditis elegans we determined the localization and sequence of all copies of each of the six active transposon families. Most copies of the most active transposons, Tc1 and Tc3, are intact but individually have a unique sequence, because of unique patterns of single-nucleotide polymorphisms. The sequence of each of the 32 Tc1 element...

متن کامل

Shotgun Cloning of Transposon Insertions in the Genome of Caenorhabditis elegans

We present a strategy to identify and map large numbers of transposon insertions in the genome of Caenorhabditis elegans. Our approach makes use of the mutator strain mut-7, which has germline-transposition activity of the Tc1/mariner family of transposons, a display protocol to detect new transposon insertions, and the availability of the genomic sequence of C. elegans. From a pilot insertiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 165 3  شماره 

صفحات  -

تاریخ انتشار 2003